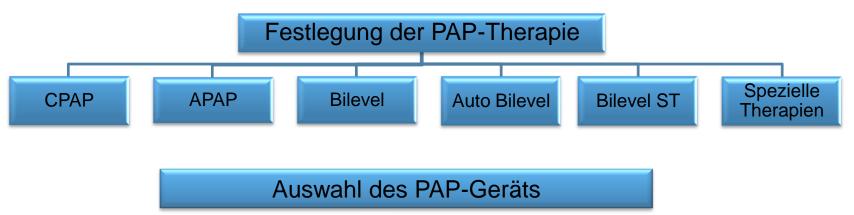
Drakenburg 28.11.2009

Präsentiert von


Dr.-Ing. Thomas Netzel

Druckstabilität von CPAP-Geräten

Agenda

- > Einleitung
- > Kenngrößen für CPAP-Geräte
- > Kenngrößen für APAP-Geräte
- > Schlussfolgerungen

Einleitung: Wie werden PAP-Geräte ausgewählt?

Schlüsselgröße bei der PAP-Therapie ist die Druckstabilität. DIN EN ISO 17510-1

Kenngrößen für CPAP-Geräte: Patienten- und Methoden I

Bezeichnung	Kurzzeitgenauigkeit Langzeitgenauigkeit		
Beschreibung	Stabilität des dynamischen Drucks	Stabilität des statischen Drucks	
Messaufbau	1 2 3 4 5 6 6 6	Schlafapnoe-Therapiegerät Atemschlauch (1,9±0,15) m Standardwiderstand Durchflussmessung Druckmessgerät Pumpe Patientenanschlussöffnung Patientenanschlussöffnung Einstellungen*: - E/I = 1 - Hubvolumen: 500 ml - sinusförmiger Fluss - AZ/ min: 10, 15, 20 - Beatmungsdruck: (1/3, 2/3, 1) p _{max,Gerät} , 10 hPa	
Messablauf/ Auswertung	-12 Messungen: 5 Min Aufzeichnung Druck, Fluss (je Druckstufe und AZ/min) -12 Messungen: nach 2 Stunden Dauerbetrieb 5 Min Aufzeichnung Druck, Fluss (je Druckstufe und AZ/min)		
Ergebnis	Druckschwankung= $\delta p = p_{max} - p_{min}$ Druckschwankung= $\delta p = p_{max} - p_{min}$		
Sollwert**	ðp ≤ 0,5 hPa (bei Beatmungsdruck < 10 hPa) ðp < 1 hPa (bei Beatmungsdruck > 10 hPa)		

^{*} gem. Prüfmethode 14-4 03/2007 MDS-Hi

Kenngrößen, Sollwerte und Prüfmethoden im Hilfsmittelverzeichnis vorgegeben.

^{**} Mindestanforderung gem. Hilfsmittelverzeichnis

Kenngrößen für CPAP-Geräte: Patienten- und Methoden II

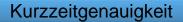
Messaufbau

- gem. DIN EN ISO 17510-1: 2009-07,
 Prüfmethode 14-4 03/2007 MDS-Hi
- Nutzung des ALOSI

Aktiver Lunge- und Obstruktions Imulator

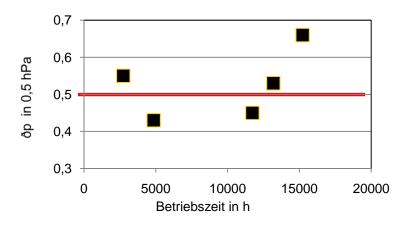
Messung

Kurzzeitgenauigkeit (Screening) bei

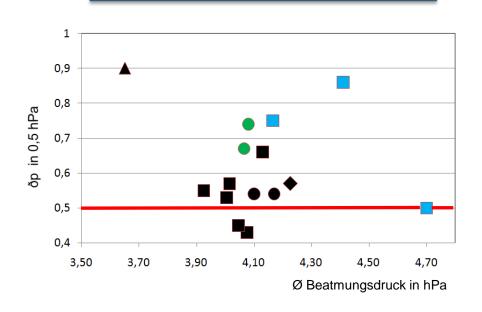

- 4 mbar Beatmungsdruck
- 20 Atemzüge / Minute
- 500 ml Hubvolumen
- -E/I = 1
- ausgeschaltete softwarebedingte
 Ausatemhilfen
- kein Befeuchter

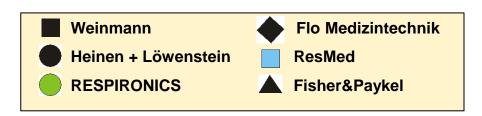
Prüfung 15 Patienten-CPAP-Geräte

- > Weinmann SOMNOcomfort 1, 2
- > ResMed minni MAX nCPAP
- > Heinen + Löwenstein Somnia 1, 2
- > Flo Medizintechnik FLOxPAP


- > RESPIRONICS Somnia 2, REMstar Pro M-Serie
- > **RESMED** S8 Elite, Autoset (CPAP-Modus)
- > Fisher&Paykel SleepStyle 200

Ergebnisse




ðp > 0,5 hPa 12 Geräteðp ≤ 0,5 hPa 3 Geräte

Alterungseffekte?*

Mittlerer Beatmungsdruck, Druckkonstanz

* 4 Baugleiche Geräte

Druckstabilität vieler Geräte > 0,5 hPa, Indiz für Alterungseffekte.

Kenngrößen für APAP-Geräte

> Fest eingestellter Beatmungsdruck:

- > Kenngrößen, Sollwerte, Prüfmethoden vorgegeben (gem. Hilfsmittelverzeichnis)
- > Geräteprüfung bei festem Solldruck analog zu CPAP-Geräte

> Automatische Regelung des Beatmungsdrucks:

- ➤ Keine Kenngrößen, Sollwerte, Prüfmethoden (gem. Hilfsmittelverzeichnis)
- keine Vergleichbarkeit von Geräte mit variablen Beatmungsdruck möglich (APAP, Bilevel, ...)

Kenngrößen für APAP-Geräte

Einführung dynamischer Kennzahlen (Vorschläge)

Bezeichnung	Reglerdynamik	Atemgasversorgung	Totzeit
Beschreibung	Druckänderungs-Geschwindigkeit bei/nach Auftreten von OSA	Versorgung des Patienten mit Atemluft	Zeit zwischen Auftreten der OSA und Einsetzen der Regelung
Definition	$D_{an/ab} = \frac{\Delta t_{Ist}}{\Delta t_{Soll}}$	$F = \frac{Fluss_{max, Ist}}{Fluss_{max, Soll}}$	$T = \frac{t_{tot, Ist}}{t_{tot, Soll}}$
Sollwert	$\Delta t_{Soll} = 2.5 s$	Fluss _{max,} soll patientenabhängig	$t_{tot, Soll} = 2 s$
Beispiel	$\Delta t_{Soll} = 2.5 \text{ s}$ $\Delta t_{Ist} \underset{ab}{an} = \left\{ \begin{array}{c} 25 \\ 700 \end{array} \right\} \text{ s}$ $D_{an} = 10$ $D_{ab} > 100$ $D_{ab} > 100$	Fluss $_{max, Ist} = 0.3 \text{ ml/s}$ Fluss $_{max, Soll} = 0.6 \text{ ml/s}$	Ende OSA $T_{tot, Soll} = 2 \text{ s}$ $T = 30$ $T_{tot, Ist} = 60 \text{ s}$
Auswirkungen bei Abweichung	 zu langsame Therapie der OSA Symptome und Folgen der OSA erhöhte Atemarbeit zu hoher mittlerer Therapiedruck 	- Hypo- oder Hyperventilation	- zu späte/zu lange OSA-Therapie

Standards inkl. Sollwerte, Testablauf müssen abgestimmt und festgelegt werden.

Schlußfolgerungen

- Druckstabilität jedes PAP-Geräts muss sichergestellt werden
 - ➤ Geräteprüfung vor Verkauf gem. Prüfmethode 14-4 03/2007 MDS-Hi
 - Technische Weiterentwicklung vieler CPAP-Geräte notwendig
 - ➤ Wartung/Austausch Gerät bei Alterungserscheinungen
- > Standards für Geräte mit variablen Beatmungsdruck notwendig (APAP, Bilevel, ...)
 - > Einheitliche Kennzahlen
 - > Standardisierter, reproduzierbarer Testablauf
 - ➤ Vorgabe von Sollwerten
- > Weitere Untersuchungen (Kennzahlen, Alterungseffekte)

Handlungsbedarf: Sicherstellung geprüfter Qualität!

Homepage

http://www.respiratorcheck.de

E-Mail

respiratorcheck@t-online.de